题目内容

11.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.
(1)填空:∠ABC=135°,BC=2$\sqrt{2}$.
(2)若点A在网格所在的坐标平面里的坐标为(1,-2),请你在图中找出一点D,写出以A、B、C、D四个点为顶点的四边形是平行四边形,在图中标出满足条件的D点位置,并直接写出D点坐标.

分析 (1)直接利用网格得出:∠ABC的度数,再利用勾股定理得出BC的长;
(2)利用平行四边形的性质得出D点位置即可.

解答 解:(1)由图形可得:∠ABC=45°+90°=135°,BC=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$;
故答案为:135°,2$\sqrt{2}$;
(2)∵点A在网格所在的坐标平面里的坐标为(1,-2),∴坐标系如图所示:
满足条件的D点共有3个,以A、B、C、D四个点为顶点的平行四边形分别是?ABCD1、?ABD2C 和?AD3BC.
则点D的坐标为:D1(3,-4)或D2(7,-4)或D3(-1,0).

点评 此题主要考查了平行四边形的判定、正方形的性质、勾股定理;注意不要漏解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网