题目内容
一个袋中装有10个红球、8个黑球、6个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸到黑球的概率是 .
如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为 ( )
A.3π B.3 C.6π D.6
圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的面积是 .
(13分)如图,直线与轴、轴分别交于点A、B,抛物线经过点A、B.求:
(1)点A、B的坐标;
(2)抛物线的函数表达式;
(3)在抛物线对称轴上是否存在点P,使得以A、B、P为顶点的三角形为等腰三角形,若存在,求点P的坐标;若不存在,请说明理由.
(9分)解方程:.
若关于的一元二次方程有两个实数根,则的取值范围是 .
cos60°的值等于( )
A. B. C. D.
甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).
(本题满分10分)在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2)与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.
(1)求二次函数的解析式;
(2)点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M坐标;
(3)点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);
①当点E在二次函数的图像上时,求OP的长;
②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE为直径的⊙M相切,直接写出此刻t的值.