题目内容
如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD要使△ABE≌△ACD,需添加一个条件是 (只要写一个条件).
如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.
(1)求k的值;
(2)用含m的代数式表示CD的长;
(3)求S与m之间的函数关系式.
正数x的两个平方根分别为3﹣a和2a+7.
(1)求a的值;
(2)求44﹣x这个数的立方根.
下列各条件中,能判定两个三角形全等的是( )
A. 两角一边对应相等 B. 两边一角对应相等
C. 两个直角三角形的锐角都对应相等 D. 两边对应相等
如图,已在AB=AC,AD=AE,∠1=∠2,求证:∠B=∠C.
如图,已知DE∥BC,若∠A=58°,∠BDE=128°,则∠C=_____°
一个三角形的三个外角中,钝角的个数最少为( )
A. 0个 B. 1个 C. 2个 D. 3个
某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.
如图,?ABC中,AB=BC=AC=12cm,现有两点M,N分别从现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒后,M、N两点重合?
(2)点M、N运动几秒后,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形?如存在,请求出此时M、N运动的时间.