题目内容
(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )
![]()
A.(﹣2012,2) B.(﹣2012,﹣2) C.(﹣2013,﹣2) D.(﹣2013,2)
A
【解析】
试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.
【解析】
∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).
∴对角线交点M的坐标为(2,2),
根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),
第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),
第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),
第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),
∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).
故选:A.
练习册系列答案
相关题目