题目内容
如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
A. 1 B. C. 4-2 D. 3-4
我国道路交通安全法第四十七条规定“机动车行经人行横道时,应当减速行驶;遇行人通过人行横道,应当停车让行” 如图:一辆汽车在一个十字路口遇到行人时刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是和,如果斑马线的宽度是米,驾驶员与车头的距离是米,这时汽车车头与斑马线的距离x是多少?
如图,?ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是 .
如图,将?ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.
(1)求证:△BEF≌△CDF;
(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.
如图,∠ACB=90°,D为AB的中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为____.
如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )
A. 20° B. 25° C. 30° D. 35°
已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为_____.
如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,则BD= .
如图,直线y=-x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=-x+10在第一象限内的一个动点.
(1)求△OPA的面积S与x的函数解析式,并写出自变量x的取值范围;
(2)过点P作PE⊥x轴于点E,作PF⊥y轴于点F,连接EF,是否存在一点P使得EF的长最小,若存在,求出EF的最小值;若不存在,请说明理由.