题目内容
如图,4个正方形的边长均为1,则图中阴影部分三个小扇形的面积和为
- A.

- B.

- C.

- D.

A
分析:根据正方形的性质可得出每个扇形的圆心角的度数,从而阴影部分可看成是圆心角为135°,半径为1是扇形,求解即可.
解答:由观察知三个扇形的半径相等均为1,且左边上下两个扇形的圆心角正好是直角三角形的两个锐角,所以它们的和为90°,右上面扇形圆心角的度数为45°,
∴阴影部分的面积应为:S=
=
π.
故选A.
点评:本题考查了扇形面积的计算及正方形的性质,也考察了学生的观察能力及计算能力,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.
分析:根据正方形的性质可得出每个扇形的圆心角的度数,从而阴影部分可看成是圆心角为135°,半径为1是扇形,求解即可.
解答:由观察知三个扇形的半径相等均为1,且左边上下两个扇形的圆心角正好是直角三角形的两个锐角,所以它们的和为90°,右上面扇形圆心角的度数为45°,
∴阴影部分的面积应为:S=
故选A.
点评:本题考查了扇形面积的计算及正方形的性质,也考察了学生的观察能力及计算能力,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.
练习册系列答案
相关题目