题目内容
问题提出
(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为 .
问题探究
(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.
问题解决
(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在
、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).
![]()
图① 图② 图③
练习册系列答案
相关题目
某校八年级为了了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上的发言次数进行了统计,其结果如下表,并绘制了如图所示两幅不完整的统计图.已知B,E两组发言人数的比为5∶2,请结合图中相关数据回答下列问题:
组别 | 发言次数n |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
发言人数直方图 发言人数扇形统计图
![]()
(1)求出样本容量,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天中发言次数不少于12次的人数;
(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E组中分别抽一位学生写调查报告.请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.