题目内容
若|3a-1|+(2b-1)2=0,求| 1 |
| a+b |
| a+3b |
| a2-b2 |
| a2+4ab+3b2 |
| a2-2ab+b2 |
分析:先根据非负数的性质求出a,b的值,再将原式化简代入求值即可.
解答:解:∵|3a-1|+(2b-1)2=0,
∴
,
解得
,
-
÷
=
-
×
=
-
=
=
,
∵a=
,b=
,
∴原式=
=
=
=
.
∴
|
解得
|
| 1 |
| a+b |
| a+3b |
| a2-b2 |
| a2+4ab+3b2 |
| a2-2ab+b2 |
=
| 1 |
| a+b |
| a+3b |
| (a+b)(a-b) |
| (a-b)2 |
| (a+b)(a+3b) |
=
| 1 |
| a+b |
| a-b |
| (a+b)2 |
=
| a+b-a+b |
| (a+b)2 |
=
| 2b |
| (a+b)2 |
∵a=
| 1 |
| 3 |
| 1 |
| 2 |
∴原式=
| 2b |
| (a+b)2 |
2×
| ||||
(
|
| 1 | ||
|
| 36 |
| 25 |
点评:本题考查了非负数的性质、分式的化简求值,是基础知识要熟练掌握.
练习册系列答案
相关题目
若3a+2b=2,则直线y=ax+b一定经过点( )
| A、(0,2) | ||
| B、(3,2) | ||
C、(-
| ||
D、(
|