题目内容
【题目】如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.![]()
(1)求点C的坐标及反比例函数的解析式.
(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.
【答案】
(1)解:过C点作CD⊥x轴,垂足为D
![]()
,设反比例函数的解析式为y=
,
∵△ABC是等边三角形,
∴AC=AB=6,∠CAB=60°,
∴AD=3,CD=sin60°×AC=
×6=3
,
∴点C坐标为(3,3
),
∵反比例函数的图象经过点C,
∴k=9
,
∴反比例函数的解析式y=
;
(2)解:若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,
则此时B点的横坐标为6,
即纵坐标y=
=
,也是向上平移n=
.
【解析】(1)利用等边三角形的性质和三角函数的定义求出C坐标,利用待定系数法可求出反比例函数的解析式; (2)利用点向上平移时,坐标的变化规律,横同纵加,利用平移后横纵之积为
,建立方程,求出n.
【考点精析】解答此题的关键在于理解反比例函数的概念的相关知识,掌握形如y=k/x(k为常数,k≠0)的函数称为反比例函数.自变量x的取值范围是x不等于0的一切实数,函数的取值范围也是一切非零实数.
练习册系列答案
相关题目