题目内容


平面内的两条直线有相交和平行两种位置关系.

(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;

(2)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)


(1)不成立,结论是∠BPD=∠B+∠D.

证明:延长BP交CD于点E.

∵AB∥CD,∴∠B=∠BED.

又∵∠BPD=∠BED+∠D,

∴∠BPD=∠B+∠D.

(2)结论:∠BPD=∠BQD+∠B+∠D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网