题目内容
⊙O和⊙O′的半径分别为R和R′,圆心距OO′=5,R=3,当0<R′<2时,⊙O和⊙O′的位置关系是
- A.内含
- B.外切
- C.相交
- D.外离
D
分析:两圆的位置关系与数量之间的联系:(P表示圆心距,R,r分别表示两圆的半径)
外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.
解答:∵当R=3,0<R′<2时,
∴3<R+R′<5,
∴两圆外离.
故选D.
点评:本题主要考查两圆的位置关系与数量之间的联系.
分析:两圆的位置关系与数量之间的联系:(P表示圆心距,R,r分别表示两圆的半径)
外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.
解答:∵当R=3,0<R′<2时,
∴3<R+R′<5,
∴两圆外离.
故选D.
点评:本题主要考查两圆的位置关系与数量之间的联系.
练习册系列答案
相关题目