题目内容
如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.
(2015秋•濉溪县期末)直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.求m、n的值及y=的表达式.
(2013•恩施州)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
(2015秋•鄂尔多斯校级月考)有下列命题,其中正确的个数有( )
①三角形的内心到三个顶点距离相等;
②如果两条弧相等,那么它们所对的圆心角也相等
③垂直于弦的直径平分弦
④等腰三角形的边长是方程x2﹣6x+8=0的解,则这个等腰三角形的周长是10.
⑤平分弦的直径垂直于弦,并且平分弦所对的两条弧.
A.2个 B.3个 C.4个 D.5个
如图,一抛物线经过点A(﹣2,0),点B(0,4)和点C(4,0),该抛物线的顶点为D.
(1)求该抛物线的函数关系式及顶点D坐标.
(2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标.
(3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.
△ABC中,∠ACB=120°,AC=BC=3,点D为平面内一点,满足∠ADB=60°,若CD的长度为整数,则所有满足题意的CD的长度的可能值为 .
方程x2=2x的根为 .
(2015秋•吴中区期末)如图,抛物线y=x2﹣3x+k与x轴交于A、B两点,与y轴交于点C(0,﹣4).
(1)k= ;
(2)点A的坐标为 ,B的坐标为 ;
(3)设抛物线y=x2﹣3x+k的顶点为M,求四边形ABMC的面积.
若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是( )
A.﹣1 B.1 C.﹣4 D.4