题目内容


如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形

(1)求该抛物线的解析式;

(2)求点P的坐标;

(3)求证:CE=EF;

(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].


解:(1)设抛物线的表达式为y=a(x﹣2)2+1,将点A(0,2)代入,得a(0﹣2)2+1=2,

解这个方程,得a=

∴抛物线的表达式为y=(x﹣2)2+1=x2﹣x+2;

(2)将x=2代入y=x,得y=2

∴点C的坐标为(2,2)即CG=2,

∵△PCQ为等边三角形

∴∠CQP=60°,CQ=PQ,

∵PQ⊥x轴,

∴∠CQG=30°,

∴CQ=4,GQ=2

∴OQ=2+2,PQ=4,

将y=4代入y=(x﹣2)2+1,得4=(x﹣2)2+1

解这个方程,得x1=2+2=OQ,x2=2﹣2<0(不合题意,舍去).

∴点P的坐标为(2+2,4);

(3)把y=x代入y=x2﹣x+2,得x=x2﹣x+2

解这个方程,得x1=4+2,x2=4﹣2<2(不合题意,舍去)

∴y=4+2=EF

∴点E的坐标为(4+2,4+2

∴OE==4+4

又∵OC==2

∴CE=OE﹣OC=4+2

∴CE=EF;

(4)不存在.

如图,假设x轴上存在一点,使△CQM≌△CPE,则CM=CE,∠QCM=∠PCE

∵∠QCP=60°,

∴∠MCE=60°

又∵CE=EF,

∴EM=EF,

又∵点E为直线y=x上的点,

∴∠CEF=45°,

点M与点F不重合.

∵EF⊥x轴,这与“垂线段最短”矛盾,

∴原假设错误,满足条件的点M不存在.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网