题目内容
如图,AD∥BE∥CF,直线l1,l2与三条平行线分别交于点A,B,C和点D,E,F.若AC=3,BC=2,DE=1.5,则DF的长为 .
已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
若n为正整数,且x2n=4,求(3x3n)2-4(-x2)2n的值.
新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin,且满足,则我们称函数y为“三角形函数”.
(1)若函数y=x+a为“三角形函数”,求a的取值范围;
(2)判断函数y=x2﹣x+1是否为“三角形函数”,并说明理由;
(3)已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.
(1)已知=≠0,求代数式的值;
(2)已知线段AB=10cm,点C、点D是线段AB的两个不同黄金分割点,求C、D之间的距离.
如图,点G、F分别是△BCD的边BC、CD上的点,BD的延长线与GF的延长线相交于点A,DE∥BC交GA于点E,则下列结论错误的是( )
A.
B.
C.
D.
如图1,已知抛物线y=x2﹣x﹣3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,顶点为D
(1)求出点A,B,D的坐标;
(2)如图1,若线段OB在x轴上移动,且点O,B移动后的对应点为O′,B′.首尾顺次连接点O′、B′、D、C构成四边形O′B′DC,请求出四边形O′B′DC的周长最小值.
(3)如图2,若点M是抛物线上一点,点N在y轴上,连接CM、MN.当△CMN是以MN为直角边的等腰直角三角形时,直接写出点N的坐标.
如图,⊙O的直径AB与弦CD(不是直径)交于点E,且CE=DE,∠A=30°,OC = 4,那么CD的长为
A. B.4 C. D.8
如图,已知点E、C在线段BF上,BE=CF,AB//ED,∠ACB=∠F.求证:△ABC≌△DEF.