题目内容


如图,MN为⊙O的直径,A、B是⊙O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是      .                   

                                                                          


14 .                                                                                          

                                                                                                        

【考点】轴对称-最短路线问题;勾股定理;垂径定理.                                 

【专题】压轴题;探究型.                                                                     

【分析】先由MN=20求出⊙O的半径,再连接OA、OB,由勾股定理得出OD、OC的长,作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,在Rt△AB′E中利用勾股定理即可求出AB′的值.                                                                        

【解答】解:∵MN=20,                                                                        

∴⊙O的半径=10,                                                                            

连接OA、OB,                                                                                  

在Rt△OBD中,OB=10,BD=6,                                                            

∴OD===8;                                                     

同理,在Rt△AOC中,OA=10,AC=8,                                                 

∴OC===6,                                                     

∴CD=8+6=14,                                                                                 

作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,                                                                                                

在Rt△AB′E中,                                                                                

∵AE=AC+CE=8+6=14,B′E=CD=14,                                                      

∴AB′===14.                                            

故答案为:14.                                                                            

                                                                          

【点评】本题考查的是轴对称﹣最短路线问题、垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.                                                              


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网