题目内容
| 时间(小时) | 频数(人数) | 频率 |
| 0≤t<0.5 | 4 | 0.1 |
| 0.5≤t<1 | a | 0.3 |
| 1≤t<1.5 | 10 | 0.25 |
| 1.5≤t<2 | 8 | b |
| 2≤t<2.5 | 6 | 0.15 |
| 合计 | 1 |
(2)补全频数分布直方图;
(3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.
考点:频数(率)分布直方图,用样本估计总体,频数(率)分布表
专题:图表型
分析:(1)根据每天完成家庭作业的时间在0≤t<0.5的频数和频率,求出抽查的总人数,再用总人数乘以每天完成家庭作业的时间在0.5≤t<1的频率,求出a,再用每天完成家庭作业的时间在1.5≤t<2的频率乘以总人数,求出b即可;
(2)根据(1)求出a的值,可直接补全统计图;
(3)用每天完成家庭作业时间在1.5小时以内的人数所占的百分比乘以该校的总人数,即可得出答案.
(2)根据(1)求出a的值,可直接补全统计图;
(3)用每天完成家庭作业时间在1.5小时以内的人数所占的百分比乘以该校的总人数,即可得出答案.
解答:解:(1)抽查的总的人数是:
=40(人),
a=40×0.3=12(人),
b=
=0.2;
故答案为:12,0.2;
(2)根据(1)可得:每天完成家庭作业的时间在0.5≤t<1的人数是12,补图如下:

(3)根据题意得:
×1400=910(名),
答:约有多少910名学生在1.5小时以内完成了家庭作业.
| 4 |
| 0.1 |
a=40×0.3=12(人),
b=
| 8 |
| 40 |
故答案为:12,0.2;
(2)根据(1)可得:每天完成家庭作业的时间在0.5≤t<1的人数是12,补图如下:
(3)根据题意得:
| 4+12+10 |
| 40 |
答:约有多少910名学生在1.5小时以内完成了家庭作业.
点评:本题考查了频数(率)分布直方图、频数(率)分布表以及用样本估计总体,在读频数分布直方图时和利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
练习册系列答案
相关题目