题目内容

如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.
考点:垂径定理
专题:证明题
分析:根据平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧得到OE⊥AB,AE=BE,OF⊥CD,CF=DF,由于AB=CD,则AE=CF,然后根据“HL”可判断Rt△AEO≌Rt△COF,于是得到OE=OF.
解答:证明:连结OA、OC,如图,
∵E、F分别为弦AB、CD的中点,
∴OE⊥AB,AE=BE,OF⊥CD,CF=DF,
∵AB=CD,
∴AE=CF,
在Rt△AEO和Rt△COF中,
AE=CF
AO=CO

∴Rt△AEO≌Rt△COF(HL),
∴OE=OF.
点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.也考查了全等三角形的判定与性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网