题目内容


如图,函数y=的图象过点A(1,2).

(1)求该函数的解析式;

(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;

(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.


解:(1)∵函数y=的图象过点A(1,2),

∴将点A的坐标代入反比例函数解析式,

得2=,解得:k=2,

∴反比例函数的解析式为y=

(2)∵点A是反比例函数上一点,

∴矩形ABOC的面积S=AC•AB=|xy|=|k|=2.

(3)设图象上任一点的坐标(x,y),

∴过这点分别向x轴和y轴作垂线,矩形面积为|xy|=|k|=2,

∴矩形的面积为定值.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网