题目内容

(2013•抚顺)在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高(
2
≈1.4,
3
≈1.7
).
分析:延长BD交AE于点F,作FG⊥ED于点G,Rt△FGD中利用锐角三角函数求得FD的长,从而求得FB的长,然后在直角三角形ABF中利用锐角三角函数求得AB的长即可.
解答:解:延长BD交AE于点F,作FG⊥ED于点G,
∵斜坡的顶部CD是水平的,斜坡与地面的夹角为30°,
∴∠FDE=∠AED=30°,
∴FD=FE,
∵DE=18米,
∴EG=GD=
1
2
ED=9米,
在Rt△FGD中,
DF=
DG
cos30°
=
9
3
2
=6
3

∴FB=(6
3
+6)米,
在Rt△AFB中,
AB=FB•tan60°=(6
3
+6)×
3
=(18+6
3
)≈28.2米,
所以古塔的高约为28.2米.
点评:此题主要考查了解直角三角形的应用,解决本题的难点是把塔高的影长分为在平地和斜坡上两部分.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网