题目内容
某商场销售一批品牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)如果每件衬衣降价x元,每天可以销售y件,求y与x的函数关系式;
(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(3)每件衬衫降价多少元时,商场平均每天盈利最多?
(1)如果每件衬衣降价x元,每天可以销售y件,求y与x的函数关系式;
(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(3)每件衬衫降价多少元时,商场平均每天盈利最多?
考点:二次函数的应用,一元二次方程的应用
专题:销售问题
分析:(1)利用每件衬衫每降价1元,商场平均每天可多售出2件,即可得出每件衬衣降价x元,每天可以多销售2x件,进而得出y与x的函数关系式;
(2)利用商场降价后每天盈利=每件的利润×卖出的件数=(40-降低的价格)×(20+增加的件数),把相关数值代入即可求解;
(3)利用商场降价后每天盈利=每件的利润×卖出的件数=(40-降低的价格)×(20+增加的件数),利用二次函数最值求法得出即可.
(2)利用商场降价后每天盈利=每件的利润×卖出的件数=(40-降低的价格)×(20+增加的件数),把相关数值代入即可求解;
(3)利用商场降价后每天盈利=每件的利润×卖出的件数=(40-降低的价格)×(20+增加的件数),利用二次函数最值求法得出即可.
解答:解:(1)∵某商场销售一批品牌衬衫,平均每天可售出20件,如果每件衬衫每降价1元,商场平均每天可多售出2件.
∴每件衬衣降价x元,每天可以销售y件,y与x的函数关系式为:y=20+2x;
(2)∵商场平均每天要盈利1200元,
∴(40-x)(20+2x)=1200,
整理得:2x2-60x+400=0,
解得:x1=20,x2=10,
因为要减少库存,在获利相同的情况下,降价越多,销售越快,故每件衬衫应降20元;
(3)设商场平均每天赢利w元,
则 w=(20+2x)(40-x),
=-2x2+60x+800,
=-2(x-15)2+1250.
∴当x=15时,w取最大值,最大值为1250.
答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.
∴每件衬衣降价x元,每天可以销售y件,y与x的函数关系式为:y=20+2x;
(2)∵商场平均每天要盈利1200元,
∴(40-x)(20+2x)=1200,
整理得:2x2-60x+400=0,
解得:x1=20,x2=10,
因为要减少库存,在获利相同的情况下,降价越多,销售越快,故每件衬衫应降20元;
(3)设商场平均每天赢利w元,
则 w=(20+2x)(40-x),
=-2x2+60x+800,
=-2(x-15)2+1250.
∴当x=15时,w取最大值,最大值为1250.
答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.
点评:此题主要考查了一元二次方程的应用以及二次函数的应用,解决本题的关键是找到销售利润的等量关系,难点是得到降价后增加的销售量.
练习册系列答案
相关题目
用一个平面去截一个正方体,所得截面不可能为( )
| A、五边形 | B、三角形 | C、梯形 | D、圆 |
一元二次方程x(x-3)=0的根的情况是( )
| A、有两个不相等的实数根 |
| B、有两个相等的实数根 |
| C、只有一个实数根 |
| D、没有实数根 |