题目内容
已知:
=
;
=
;
计算:
= ;
猜想:
= .
| 2-1 |
| 22-12 |
| 1 |
| 3 |
| 4-3+2-1 |
| 42-32+22-12 |
| 1 |
| 5 |
计算:
| 6-5+4-3+2-1 |
| 62-52+42-32+22-12 |
猜想:
| [(2n+2)-(2n+1)]+…+(6-5)+(4-3)+(2-1) |
| [(2n+2)2-(2n+1)2]+…+(62-52)+(42-32)+(22-12) |
考点:规律型:数字的变化类
专题:规律型
分析:由
=
;
=
;
=
;…
由此看出分子是从n个1相加,结果等于n;分母是(4n+3)+(4n-1)+…+11+7+3=
=n(2n+3),故猜想
=
.
| 2-1 |
| 22-12 |
| 1 |
| 3 |
| 4-3+2-1 |
| 42-32+22-12 |
| 1 |
| 5 |
| 6-5+4-3+2-1 |
| 62-52+42-32+22-12 |
| 1 |
| 7 |
由此看出分子是从n个1相加,结果等于n;分母是(4n+3)+(4n-1)+…+11+7+3=
| n(4n+3+3) |
| 2 |
| [(2n+2)-(2n+1)]+…+(6-5)+(4-3)+(2-1) |
| [(2n+2)2-(2n+1)2]+…+(62-52)+(42-32)+(22-12) |
| 1 |
| 2n+3 |
解答:解:已
=
;
=
;
=
;
…
分子为n个1相加,结果等于n;
分母为n项相加:(4n+3)+(4n-1)+…+11+7+3=
=n(2n+3)
∴猜想
=
=
.
故答案为:
;
.
| 2-1 |
| 22-12 |
| 1 |
| 3 |
| 4-3+2-1 |
| 42-32+22-12 |
| 1 |
| 5 |
| 6-5+4-3+2-1 |
| 62-52+42-32+22-12 |
| 1 |
| 7 |
…
| [(2n+2)-(2n+1)]+…+(6-5)+(4-3)+(2-1) |
| [(2n+2)2-(2n+1)2]+…+(62-52)+(42-32)+(22-12) |
分子为n个1相加,结果等于n;
分母为n项相加:(4n+3)+(4n-1)+…+11+7+3=
| n(4n+3+3) |
| 2 |
∴猜想
| [(2n+2)-(2n+1)]+…+(6-5)+(4-3)+(2-1) |
| [(2n+2)2-(2n+1)2]+…+(62-52)+(42-32)+(22-12) |
| n |
| n(2n+3) |
| 1 |
| 2n+3 |
故答案为:
| 1 |
| 7 |
| 1 |
| 2n+3 |
点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.
练习册系列答案
相关题目