题目内容
已知3a=1,3b=2,则3a+b的值为( )
A. 1 B. 2 C. 3 D. 27
如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).
(1)求直线BC的函数表达式;
(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)
②在点P、Q运动的过程中,当PQ=PD时,求t的值;
(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.
如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长( )
A. 4 B. 6 C. 8 D. 10
定义为二阶行列式,规定它的运算法则为=ad-bc.则二阶行列式的值为___.
若4x2+kx+25=(2x+a)2,则k+a的值可以是( )
A. -25 B. -15 C. 15 D. 20
某镇正在建造的文化广场工地上,有两种铺设广场地面的材料,一种是长为 cm,宽为cm的长方形板材(如图),另一种是边长为cm的正方形地砖(如图②)
(1)用几块如图②所示的正方形地砖能拼出一个新的正方形?并写出新正方形的面积
(写出一个符合条件的答案即可);
(2)我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问
题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差
法”:就是通过作差、变形,并利用差的符号来确定它们的大小,即要比较代数式M、
N的大小,只要作出它们的差,若,则;若,则
;若,则.
请你用“作差法”解决以下问题:用如图①所示的四块长方形板材铺成如图③的大正方形或如图④的大长方形,中间分别空出一个小正方形和小长方形(图中阴影部分);
① 请用含、的代数式分别表示图③和图④中阴影部分的面积;
② 试比较图③和图④中阴影部分的面积哪个大?大多少?
先化简再求值:,其中.
下列计算正确的是( )
A. B. C. D.
如果(x-)0有意义,那么x的取值范围是( )
A.x> B.x< C.x= D.x≠