题目内容
如图,抛物线y=﹣
x2+
x+3
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).
(1)求直线BC的函数表达式;
(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)
②在点P、Q运动的过程中,当PQ=PD时,求t的值;
(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.
![]()
练习册系列答案
相关题目
某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:
锻炼时间(小时) | 5 | 6 | 7 | 8 |
人数 | 2 | 6 | 5 | 2 |
则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是( )
A.6,7 B.7,7 C.7,6 D.6,6