题目内容
在Rt△ABC中,∠ACB=90º,AC=8,BC=6,点D、E分别在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,则BE=____________.
在平面直角坐标系中,我们定义直线为抛物线、b、c为常数,的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.
已知抛物线与其“梦想直线”交于A、B两点点A在点B的左侧,与x轴负半轴交于点C.
填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______;
如图,点M为线段CB上一动点,将以AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的“梦想三角形”,求点N的坐标;
当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
二次函数y=(x﹣5)2+7的最小值是( )
A. ﹣7 B. 7 C. ﹣5 D. 5
初三(1)班要从甲、乙、丙、丁这名同学中随机选取名同学参加学校毕业生代表座谈会.
()已确定甲参加,则另外人恰好选中乙的概率是_________;
()随机选取名同学,用树状图或列表求出恰好选中甲和乙的概率.
若圆O的半径是5,圆心的坐标是(0,0),点P的坐标是(-4,3),则点P与⊙O的位置关系是 ________.
在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( ).
A. B. C. D.
已知台钟的时针长为,从时到时,时针针尖所走过的路程是________.
某书店响应国家“中华优秀传统文化经典进书店”的号召,用2100元购进某经典读本若干套,很快售完,该店又用4500元购进第二批该经典读本若干套,进货量是第一批的2倍,但每套的进价比第一批提高了10元.求:
(1)该店这两批经典读本各购进多少套?
(2)若第一批该经典读本的售价是170元套,该店经理想让这两批经典读本售完后的总利润不低于1950元,则第二批该经典读本每套至少要售多少元?