题目内容
小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
如图①,Rt△ABC中,∠B=90°,∠CAB=30°,它的顶点A的坐标为(10,0),顶点B的坐标为(5,5),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),则点P的运动速度为 ;
(2)求(1)中面积S与时间t之间的函数关系式及面积S的最大值及S取最大值时点P的坐标;
(3)如果点P,Q保持(1)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有 个.
如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数(x>0)图象上,PA⊥x轴,△PAB是以PA为底边的等腰三角形.当点A的横坐标逐渐增大时,△PAB的面积将会( )
A. 越来越小 B. 越来越大 C. 不变 D. 先变大后变小
已知实数a、b满足(a+2)2+=0,则a+b的值为 .
若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=_____.
下列各式计算正确的是( )
A. (a﹣b)2=a2﹣b2 B. (﹣a4)3=a7 C. 2a•(﹣3b)=6ab D. a5÷a4=a(a≠0)
某校要求200名学生进行社会调查,每人必须完成3~6份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份 各类的人数绘制成扇形图(如图1)和尚未完整的条形图(如图2),回答下列问题:
(1)请将条形统计图2补充完整;
(2)写出这20名学生每天完成报告份数的众数 份和中位数;
(3)在求出20名学生每人完成报告份数的平均数时,小明是这样分析的 第一步:求平均数的公式是=+++…+)
第二步:在该问题中,n=4 =3, =4, =5 =6
第三步=(3+4+5+6)=4.5(份)
小明的分析对不对?如果对,请说明理由,如果不对,请求出正确结果;
(4)现从“D类”的学生中随机选出2人进行采访,若“D类”的学生中只有1名 男生,则所选两位同学中有男同学的概率是多少?请用列表法或树状图的方法求解.
下列计算正确的是( )
A. (-2)2=4 B. C. 0×(-2018)=2018 D. -2<-3
如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.