题目内容

(1996•山东)若顺次连接四边形ABCD各边的中点所得到的四边形是正方形,则四边形ABCD一定是(  )
分析:此题要根据正方形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是正方形,那么邻边互相垂直且相等,故原四边形的对角线必互相垂直且相等,由此得解.
解答:已知:如右图,四边形EFGH是正方形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直且相等的四边形.
证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,
根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;
∵四边形EFGH是正方形,即EF⊥FG,FE=FG,
∴AC⊥BD,AC=BD,
故选D.
点评:本题主要考查了矩形的性质和三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网