题目内容
学校组织春游,每人车费4元.一班班长与二班班长的对话如下:
由上述对话可知,一班和二班的人数分别是( ).
A.45,42 B.45,48 C.48,51 D.51,42
(本题满分8分)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)
分解因式:= .
如图,矩形OABC中, A(0,5),C(4,0),正比例函数的图象经过点B.
(1)求正比例函数的表达式;
(2)反比例函数的图象与正比例函数的图象和边BC围成的阴影区域BNM如图所示,请直接写出阴影区域中横纵坐标都是整数的点的坐标(不包括边界).
如图1,将长为20cm,宽为2cm的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为 cm2.
如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠DCE等于( ).
A.35° B.45° C.55° D.65°
现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.________
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、,请利用图2的正方形网格(每个小正方形的边长为)画出相应的△ABC,并求出它的面积是: .
探索创新:
(3)若△ABC三边的长分别为、、,请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为: .
函数y=中,自变量x的取值范围是( )
A. B. C. D.
如图,菱形ABCD中∠ABC=60°,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是( )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;
④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为时,菱形ABCD的边长为2.
A.①②③ B.①②④⑤ C.①②⑤ D.①②③④⑤