题目内容
某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:
| 类型 价格 | 进价(元/盏) | 售价(元/盏) |
| A型 | 30 | 45 |
| B型 | 50 | 70 |
(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
考点:
一次函数的应用;一元一次方程的应用.
专题:
销售问题.
分析:
(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;
(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
解答:
解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
根据题意得,30x+50(100﹣x)=3500,
解得x=75,
所以,100﹣75=25,
答:应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利y元,
则y=(45﹣30)x+(75﹣50)(100﹣x),
=15x+2000﹣20x,
=﹣5x+2000,
∵B型台灯的进货数量不超过A型台灯数量的3倍,
∴100﹣x≤3x,
∴x≥25,
∵k=﹣5<0,
∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)
答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
点评:
本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)理清题目数量关系并列式求出x的取值范围是解题的关键.
练习册系列答案
相关题目
从2008年12月1日起,国家开始实施家电下乡计划,国家将按照农民购买家电金额的13%予以财政补贴.某商场计划购进A、B两种型号的彩电共100台,已知该商场所筹购买的资金不少于222 000元,但不超过222 800元.国家规定这两种型号彩电的进价和售价如下表:
(1)农民购买哪种型号的彩电获得的政府补贴要多一些?请说明理由;
(2)该商场购进这两种型号的彩电共有哪些方案?其中哪种购进方案获得的利润最大?请说明理由.(注:利润=售价-进价)
| 型号 | A | B |
| 进价(元/台) | 2000 | 2400 |
| 售价(元/台) | 2500 | 3000 |
(2)该商场购进这两种型号的彩电共有哪些方案?其中哪种购进方案获得的利润最大?请说明理由.(注:利润=售价-进价)