题目内容

某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:

类型  价格

进价(元/盏)

售价(元/盏)

A型

30

45

B型

50

70

(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?

(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

考点:

一次函数的应用;一元一次方程的应用.

专题:

销售问题.

分析:

(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;

(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.

解答:

解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,

根据题意得,30x+50(100﹣x)=3500,

解得x=75,

所以,100﹣75=25,

答:应购进A型台灯75盏,B型台灯25盏;

(2)设商场销售完这批台灯可获利y元,

则y=(45﹣30)x+(75﹣50)(100﹣x),

=15x+2000﹣20x,

=﹣5x+2000,

∵B型台灯的进货数量不超过A型台灯数量的3倍,

∴100﹣x≤3x,

∴x≥25,

∵k=﹣5<0,

∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)

答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.

点评:

本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)理清题目数量关系并列式求出x的取值范围是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网