题目内容
已知两圆的半径分别为一元二次方程x2﹣7x+12=0的二根,圆心距为1,则两圆位置关系为( )
A.内切 B.外切 C.相交 D.相离
A【考点】圆与圆的位置关系;解一元二次方程-因式分解法.
【分析】先求得方程的根,再根据数量关系来判断两圆的位置关系判定.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.
【解答】解:解方程x2﹣7x+12=0,
化为(x﹣3)(x﹣4)=0,
解得x1=3,x2=4.
即R=4,r=3,
∵d=1=R﹣r,
∴这两个圆的位置关系是内切,
故选A.
【点评】本题考查了圆与圆的位置关系及一元二次方程的解法,根据数量关系来判断两圆的位置关系是解决问题的关键.
练习册系列答案
相关题目