题目内容
【题目】如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
![]()
(1)由图1通过观察、猜想可以得到线段AC与线段BC的数量关系为___,位置关系为__;
(2)保持图1中的△ABC固定不变,绕点C旋转DE所在的直线MN到图2中的位置(当垂线AD、BE在直线MN的同侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明(第一问中得到的猜想结论可以直接在证明中使用);
(3)保持图2中的△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有___关系.
【答案】(1)AC=BC,AC⊥BC,;(2)DE=AD+BE,理由见解析;(3)DE=BEAD.
【解析】
(1)根据矩形的性质及勾股定理,即可证得△ADC≌△BEC,根据全等三角形的性质即可得到结论;
(2)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系;
(3)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系.
(1)AC=BC,AC⊥BC,
在△ADC与△BEC中,
,
∴△ADC≌△BEC(SAS),
∴AC=BC,∠DCA=∠ECB.
∵AB=2AD=DE,DC=CE,
∴AD=DC,
∴∠DCA=45°,
∴∠ECB=45°,
∴∠ACB=180°∠DCA∠ECB=90°.
∴AC⊥BC,
故答案为:AC=BC,AC⊥BC;
(2)DE=AD+BE.理由如下:
∵∠ACD=∠CBE=90°∠BCE,
在△ACD与△CBE中,
,
∴△ACD≌△CBE(AAS),
∴AD=CE,DC=EB.
∴DC+CE=BE+AD,
即DE=AD+BE.
(3)DE=BEAD.理由如下:
∵∠ACD=∠CBE=90°∠BCE,
在△ACD与△CBE中,
,
∴△ACD≌△CBE(AAS),
∴AD=CE,DC=EB.
∴DCCE=BEAD,
即DE=BEAD,
故答案为:DE=BEAD.