题目内容
已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为( )
A. B. C. D.
如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.
(1)求建筑物BC的高度;
(2)求旗杆AB的高度.
(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)
在平面直角坐标系中,已知点A(2,2),点B(2,-3).在坐标轴上找一点C,使得△ABC为直角三角形,这样的点C共有( )个。
A.5 B.6 C.7 D.8
如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).
对称轴为直线x=1的抛物线y=ax2+bx+c与x轴的一个交点坐标为(3,0),则关于x轴的一元二次方程ax2+bx+c=0的根是 .
在平面直角坐标系中,对于点P(a,b)和点Q(a,b′),给出如下定义:
若,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).
(1)①点(,1)的限变点的坐标是 ;
②在点A(-2,-1),B(-1,2)中有一个点是函数y=图象上某一个点的限变点,这个点是 ;
(2)若点P在函数y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点Q的纵坐标b′的取值范围是-5≤b′≤2,求k的取值范围;
(3)若点P在关于x的二次函数y= x2-2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m-n,求s关于t的函数解析式并直接写出s的取值范围.
用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:线段c,直线l及l外一点A.
求作:Rt△ABC,使直角边为AC(AC⊥l ),垂足为C,斜边AB=c.
化简+的结果是( )
A. x+1 B. C. x-1 D.
温度由?C上升5?C后是( )?C.