题目内容
分解因式:a2﹣4a=__.
下列多项式在有理数范围内,能用完全平方公式分解因式的是( )
A. m2﹣2m﹣1 B. m2﹣2m+1 C. m2+n2 D. m2﹣mn+n2
(1)阅读下面材料:
点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.
当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,
①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;
②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;
③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;
综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.
(2)回答下列问题:
①数轴上表示2和5的两点之间的距离是 ,数轴上表示﹣2和﹣5的两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 ;
②数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;
③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是 .
④解方程|x+1|+|x﹣2|=5.
我们规定:有一组邻边相等,且这组邻边的夹角为60°的凸四边形叫做“准筝形”.如图1,四边形ABCD中,若AB=AD,∠A=60°,则四边形ABCD是“准筝形”.
(1)如图2,CH是△ABC的高线,∠A=45°,∠ABC=120°,AB=2.求CH;
(2)在(1)条件下,设D是△ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积;
(3)如图3,四边形ABCD中,BC=2,CD=4,AC=6,∠BCD=120°,且AD=BD,试判断四边形ABCD是不是“准筝形”,并说明理由.
(1)计算:|﹣3|+×3﹣1;(2)解方程: +=1.
某服装店举办促销活动,促销方法是“原价x元的服装打7折后再减去10元”,则下列代数式中,能正确表达该商店促销方法的是( )
A. 30%(x﹣10) B. 30%x﹣10 C. 70%(x﹣10) D. 70%x﹣10
﹣8的立方根是( )
A. 2 B. ﹣2 C. ±2 D. ﹣
如图,把易拉罐中的水倒入一个圆水杯的过程中,当水杯中的水在点P与易拉罐刚好接触时水杯中的水深为( )
A. 2cm B. 4cm C. 6cm D. 8cm