题目内容

10.我们知道同一平面内的两条直线有相交和平行两种位置关系.
(1)观察与思考:如图1,若AB∥CD,点P在AB、CD内部,∠BPD、∠B、∠D之间的数量关系为∠BPD=∠B+∠D,不必说明理由;
(2)猜想与证明:如图2,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,利用(1)中的结论(可以直接套用)求∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;
(3)拓展与应用:如图3,设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为75度,∠A比∠F大65度.

分析 (1)过点P作PE∥AB,根据两直线平行,内错角相等可得∠B=∠1,∠D=∠2,再根据∠BPD=∠1+∠2即可得解;
(2)连接QP并延长,再根据三角形的一个外角等于与它不相邻的两个内角的和解答;
(3)依据(2)中的结论、三角形的内角和及三角形的外角和即可求得.

解答 解:(1)过点P作PE∥AB,
∵AB∥CD,
∴AB∥EP∥CD,
∴∠B=∠1,∠D=∠2,
∴∠BPD=∠B+∠D;

(2)如图,连接QP并延长,
结论:∠BPD=∠BQD+∠B+∠D.
∠BPD=(∠BQP+∠B)+(∠DQP+∠D)=∠BQD+∠B+∠D.

(3)∵∠ANF=105°,
∴∠ENF=∠B+∠E+∠F=180°-105°=75°,
∵∠A=∠AMB-∠B-∠E,
∠F=180°-∠ANF-∠B-∠E,
∴∠A-∠F=∠AMB+∠ANF-180°=65°.
故答案为:∠BPD=∠B+∠D;75,65.

点评 本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网