题目内容

如图,直线AB和CD相交于O,OE⊥AB,那么图中∠DOE与∠COA的关系是(  )
A、对顶角B、相等C、互余D、互补
考点:垂线,余角和补角,对顶角、邻补角
专题:计算题
分析:先由垂直的定义得到∠AOE=∠BOE=90°,则∠DOE+∠BOD=90°,再根据对顶角相等得到∠BOD=∠AOC,所以∠DOE+∠AOC=90°,然后根据互余的定义进行判断.
解答:解:∵OE⊥AB,
∴∠AOE=∠BOE=90°,
∴∠DOE+∠BOD=90°,
∵∠BOD=∠AOC,
∴∠DOE+∠AOC=90°,
即∠DOE与∠COA互余.
故选C.
点评:本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质过一点有且只有一条直线与已知直线垂直.也考查了对顶角和两角互余.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网