题目内容

如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于________.

1:3
分析:首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.
解答:∵△ABC是正三角形,
∴∠B=∠C=∠A=60°,
∵DE⊥AC,EF⊥AB,FD⊥BC,
∴∠AFE=∠CED=∠BDF=90°,
∴∠BFD=∠CDE=∠AEF=30°,
∴∠DFE=∠FED=∠EDF=60°,
∴△DEF是正三角形,
∴BD:DF=1:①,BD:AB=1:3②,△DEF∽△ABC,
①÷②,=
∴DF:AB=1:
∴△DEF的面积与△ABC的面积之比等于1:3.
故答案为:1:3.
点评:此题考查了相似三角形的判定与性质,以及直角三角形的性质.此题难度不是很大,解题时要注意仔细识图.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网