题目内容
根据“欢欢”与“乐乐”的对话,解决下面的问题:
欢欢:我手中有四张卡片,它们上面分别写有8,3x+2,
x-3,
.
乐乐:我用等号将这四张卡片中的任意两张卡片上的数或式子连接起来,就会得到等式或一元一次方程.
问题:(1)乐乐一共能写出几个等式?
(2)在她写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.
(1)6个等式 (2)有3个一元一次方程,它们分别是: 3x+2=8, x-3=8, x-3=3x+2 【解析】试题分析:(1)共有4个式子,任意两张构成一个等式,一共可写出6个等式, (2)根据(1)列出的所有等式,根据一元一次方程的定义可以判定. 试题解析:(1)乐乐一共能写出6个等式:8=3x+2, ,,, ,, (2)在(1)中有3个一元一次方程,...如图,点D在AB上,点E在AC上,AB=AC,AD=AE.试说明∠B=∠C.
![]()
先化简再求值:(a-2)2-(a-1)·(a+1)+5a,其中a=-2.
查看答案小聪和小明沿同一条路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4 km,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O—A—B—C和线段OD分别表示两人离学校的路程s(km)与所经过的时间t(min)之间的关系,请根据图象回答:下列四个结论
![]()
①小聪在图书馆查阅资料的时间为15 min;
②小聪返回学校的速度为
km/min;
③小明离开学校的路程s(km)与所经过的时间t(min)之间的关系式是s=
t;
④当小聪与小明迎面相遇时,他们离学校的路程是
km.
其中正确结论的序号是_____.
查看答案如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=__度.
![]()
如图,∠1+∠2=284°,b∥c,则∠3= ,∠4= .
![]()
一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是 .
查看答案 试题属性- 题型:解答题
- 难度:简单
若二次函数
的图象经过点
,则
的值为( ).
A.
B.
C.
D. ![]()
若
,则
的值等于( ).
A.
B.
C.
D. ![]()
【问题提出】
学习了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你利用图③,在图③中用尺规作出△DEF,使△DEF和△ABC不全等.
![]()
如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
![]()
如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A关于直线m(直线m上各点的横坐标都为3)的对称点.
(1)在图中标出点A,B,C的位置并求出点C的坐标;
(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.
![]()
将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.
求证:△CDO是等腰三角形.
![]()
- 题型:单选题
- 难度:简单
如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为
![]()
A. 40° B. 36° C. 30° D. 25°
B 【解析】设∠B=x,因AB=AC,根据等腰三角形的性质可得∠B=∠C=x,因AD=CD,根据等腰三角形的性质可得∠DAC=∠C=x,因BD=BA,根据等腰三角形的性质和三角形外角的性质可得∠BAD=∠ADB=2x,在△ABD中,根据三角形的内角和定理可得x+2x+2x=180°,解得x=36°,即∠B=36°,故选B.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )
A. (1,2) B. (﹣1,﹣2) C. (﹣1,2) D. (﹣2,1)
查看答案如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
![]()
A. 15 B. 30 C. 45 D. 60
查看答案下列条件中,不能判定两个直角三角形全等的是( )
A. 两直角边对应相等 B. 斜边和一条直角边对应相等
C. 两锐角对应相等 D. 一个锐角和斜边对应相等
查看答案一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( )
A. 7 B. 8 C. 9 D. 10
查看答案 试题属性- 题型:单选题
- 难度:中等
如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要( )
![]()
A. AB=CD B. EC=BF C. ∠A=∠D D. AB=BC
A 【解析】∵EA∥DF, ∴∠A=∠D, 又∵AE=DF, ∴只需添上选项A中的条件:AB=CD即可得到:AC=DB,从而由“SAS”证得△AEC≌△DFB,而添加其它三个选项中的条件都不能证得△AEC≌△DFB. 故选A.如图,已知在△ABC中,∠ABC=70°,∠C=50°,BD是角平分线,则∠BDC的度数为
![]()
A. 95° B. 100° C. 110° D. 120°
查看答案三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形( )
A. 1个 B. 3个 C. 5个 D. 无数个
查看答案在下列四个交通标志图中,是轴对称图形的是( )
A.
B.
C.
D. ![]()
已知实数
,
满足:
,且
,求
的值.
已知
与
互为相反数,求
的平方根.
- 题型:单选题
- 难度:简单