题目内容
1.解分式方程:$\frac{4}{{x}^{2}-4}$-$\frac{1}{x-2}$=1.分析 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答 解:去分母得:4-(x+2)=x2-4,
整理得:x2+x-6=0,即(x-2)(x+3)=0,
解得:x=2或x=-3,
经检验x=2是增根,分式方程的解为x=-3.
点评 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
练习册系列答案
相关题目
16.抛物线y=$\frac{1}{2}$x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )
| A. | y=$\frac{1}{2}$(x-2)2+1 | B. | y=$\frac{1}{2}$(x-2)2-1 | C. | y=$\frac{1}{2}$(x+2)2+1 | D. | y=$\frac{1}{2}$(x+2)2-1 |