题目内容
7
7
.分析:把△ABE逆时针旋转90°得到△ADG,根据旋转的性质可得BE=GD,AE=AG,再根据∠EAF=45°求出∠FAG=45°,然后利用边角边定理证明△AEF与△AGF全等,根据全等三角形对应边相等可得EF=GF,即EF=GD+FD,即可证明EF=BE+DF=7.
解答:解:如图,把△ABE逆时针旋转90°得到△ADG,
∴BE=GD,AE=AG,
∵∠EAF=45°,
∴∠FAG=90°-45°=45°,
∴∠EAF=∠FAG,
在△AEF和△AGF中,
,
∴△AEF≌△AGF(SAS),
∴EF=GF,
即EF=GD+DF,
∴EF=BE+DF,
∵BE=3,DF=4,
∴EF=BE+DF=7,
故答案为7.
∴BE=GD,AE=AG,
∵∠EAF=45°,
∴∠FAG=90°-45°=45°,
∴∠EAF=∠FAG,
在△AEF和△AGF中,
|
∴△AEF≌△AGF(SAS),
∴EF=GF,
即EF=GD+DF,
∴EF=BE+DF,
∵BE=3,DF=4,
∴EF=BE+DF=7,
故答案为7.
点评:本题考查了正方形四边均相等,且各内角均为直角的性质,考查了全等三角形的证明,本题把△ABE逆时针旋转90°,构建全等三角形△AEF与△AGF是解题的关键.
练习册系列答案
相关题目