题目内容

如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,CA为半径的圆交AB于点D,交BC于点E,求
AD
DE
的度数.
考点:圆心角、弧、弦的关系
专题:计算题
分析:连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,接着利用互余计算出∠DCE=34°,然后根据圆心角的度数等于它所对弧的度数求解.
解答:解:连接CD,如图,
∵∠C=90°,∠B=28°,
∴∠A=90°-28°=62°,
∵CA=CD,
∴∠A=∠ADC=62°,
∴∠ACD=180°-2×62°=56°
AD
的度数为56°;
∵∠DCE=90°-∠ACD=34°,
DE
的度数为34°.
点评:本题考查了圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网