题目内容

11.如图,Rt△ABC中,AB⊥BC,AB=10,BC=12,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为(  )
A.7B.8C.$\frac{8\sqrt{13}}{13}$D.$\frac{12\sqrt{13}}{13}$

分析 首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.

解答 解:解:∵∠ABC=90°,
∴∠ABP+∠PBC=90°,
∵∠PAB=∠PBC,
∴∠BAP+∠ABP=90°,
∴∠APB=90°,
∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,
在Rt△BCO中,∵∠OBC=90°,BC=12,OB=5,
∴OC=$\sqrt{O{B}^{2}+B{C}^{2}}$=13,
∴PC=OC-OP=13-5=8.
∴PC最小值为8.
故选B.

点评 本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网