题目内容


如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.


【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.

【专题】证明题.

【分析】根据直角三角形斜边上的中线等于斜边的一半可得DM=EC,BM=EC,从而得到DM=BM,再根据等腰三角形三线合一的性质证明.

【解答】证明:∵BC⊥a,DE⊥b,点M是EC的中点,

∴DM=EC,BM=EC,

∴DM=BM,

∵点N是BD的中点,

∴MN⊥BD.

【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网