题目内容

如图,在Rt△ABC中,∠BAC=90°,AB=AC,在BC的同侧作任意Rt△DBC,∠BDC=90°.

(1)若CD=2BD,M是CD中点(如图1),求证:△ADB≌△AMC;

下面是小明的证明过程,请你将它补充完整:

证明:设AB与CD相交于点O,

∵∠BDC=90°,∠BAC=90°,

∴∠DOB+∠DBO=∠AOC+∠ACO=90°.

∵∠DOB=∠AOC,

∴∠DBO=∠

∵M是DC的中点,

∴CM=CD=

又∵AB=AC,

∴△ADB≌△AMC.

(2)若CD<BD(如图2),在BD上是否存在一点N,使得△ADN是以DN为斜边的等腰直角三角形?若存在,请在图2中确定点N的位置,并加以证明;若不存在,请说明理由;

(3)当CD≠BD时,线段AD,BD与CD满足怎样的数量关系?请直接写出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网