题目内容
已知一元二次方程x2+(1-2m)x+m+13=0的两根之积等于两根之和的2倍,则m的值是
- A.-5
- B.5
- C.

- D.

B
分析:设方程两根分别为x1,x2,根据根与系数的关系得到x1+x2=2m-1,x1•x2=m+13,由于两根之积等于两根之和的2倍,则m+13=2(2m-1),解得m=5,然后计算此时方程的根的判别式确定m的值.
解答:设方程两根分别为x1,x2,则x1+x2=2m-1,x1•x2=m+13,
根据题意得m+13=2(2m-1),
解得m=5,
此时方程变为x2-9x+18=0,△=81-4×18>0,
所以m=5.
故选B.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=-
,x1•x2=
.也考查了一元二次方程根的判别式.
分析:设方程两根分别为x1,x2,根据根与系数的关系得到x1+x2=2m-1,x1•x2=m+13,由于两根之积等于两根之和的2倍,则m+13=2(2m-1),解得m=5,然后计算此时方程的根的判别式确定m的值.
解答:设方程两根分别为x1,x2,则x1+x2=2m-1,x1•x2=m+13,
根据题意得m+13=2(2m-1),
解得m=5,
此时方程变为x2-9x+18=0,△=81-4×18>0,
所以m=5.
故选B.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=-
练习册系列答案
相关题目