题目内容
如图(1),矩形ABCD,AB=2cm,AD=6cm,P、Q分别为两个动点,点P从B出发沿边BC运动,每秒1cm,点Q从B出发沿边B—C—D运动,每秒2cm.
(1)若P、Q两点同时出发,其中一点到达终点时另一点也随之停止,设△BPQ面积为S,时间为t秒,求S关于t的函数关系式及自变量的取值范围;
![]()
(2)若R为AD中点,连接RP、RQ,当以R、P、Q为顶点的三角形与△BPQ相似(含全等)时,求t的值;
(3)如图(2)M为AD边上一点,AM=2,点Q在1.5秒时便停止运动,点P继续在BC上运动,AP与BQ交于点E,PM交CQ于点F,设四边形QEPF的面积为y,求y的最大值.
![]()
练习册系列答案
相关题目
某校为更好地培养学生兴趣,开展“拓展课程走班选课”活动,随机抽查了部分学生,了解他们最喜爱的项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.
最喜爱的项目类型频数分布表
项目类型 | 频数 | 频率 |
书法类 | 18 | a |
围棋类 | 14 | 0.28 |
喜剧类 | 8 | 0.16 |
国画类 | b | 0.20 |
![]()
根据以上信息完成下列问题:
(1)直接写出频数分布表中a的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?