题目内容


如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.

(1)求证:AB=AC;

(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.


证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,

∴∠ABE=∠DAE,又∠EAC=∠EBC,

∴∠DAC=∠ABC,

∵AD∥BC,

∴∠DAC=∠ACB,

∴∠ABC=∠ACB,

∴AB=AC;

(2)作AF⊥CD于F,

∵四边形ABCE是圆内接四边形,

∴∠ABC=∠AEF,又∠ABC=∠ACB,

∴∠AEF=∠ACB,又∠AEB=∠ACB,

∴∠AEH=∠AEF,

在△AEH和△AEF中,

∴△AEH≌△AEF,

∴EH=EF,

∴CE+EH=CF,

在△ABH和△ACF中,

∴△ABH≌△ACF,

∴BH=CF=CE+EH.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网