题目内容
【题目】如图,在ABCD中,AB=6,BC=6
,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF的长为_____.
![]()
【答案】
或![]()
【解析】
由平行四边形的性质得出∠B=∠D=30°,CD=AB=6,AD=BC=6
,作CH⊥AD于H,则CH=
CD=3,DH=
CH=3
=
AD,得出AH=DH,由线段垂直平分线的性质得出CA=CD=AB=6,由等腰三角形的性质得出∠ACB=∠B=30°,由平行线的性质得出∠BFG=∠ACB=30°,分两种情况:
①作EM⊥BF于M,在BF上截取EN=BE=3,则∠ENB=∠B=30°,由直角三角形的性质得出EM=
BE=
,BM=NM=
EM=
,得出BN=2BM=3
,再证出FN=EN=3,即可得出结果;
②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,则∠ENB=∠B=30°,得出EN∥AC,EM=
BE=
,BM=NM=
EM=
,BN=2BM=3
,证出FG∥EN,则∠G=∠GEN,证出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折叠的性质得∠BEF=∠GEF=
∠BEG=45°,证出∠NEF=∠NFE,则FN=EN=3,即可得出结果.
解:∵四边形ABCD是平行四边形,
∴∠B=∠D=30°,CD=AB=6,AD=BC=6
,
作CH⊥AD于H,
则CH=
CD=3,DH=
CH=3
=
AD,
∴AH=DH,
∴CA=CD=AB=6,
∴∠ACB=∠B=30°,
∵FG∥AC,
∴∠BFG=∠ACB=30°,
∵点E是AB边的中点,
∴BE=3,
分两种情况:
①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:
则∠ENB=∠B=30°,
∴EM=
BE=
,BM=NM=
EM=
,
∴BN=2BM=3
,
由折叠的性质得:∠BFE=∠GFE=15°,
∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,
∴FN=EN=3,
∴BF=BN+FN=3
+3;
②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:
则∠ENB=∠B=30°,
∴EN∥AC,EM=
BE=
,BM=NM=
EM=
,
∴BN=2BM=3
,
∵FG∥AC,
∴FG∥EN,
∴∠G=∠GEN,
由折叠的性质得:∠B=∠G=30°,
∴∠GEN=∠ENB=∠B=∠G=30°,
∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,
∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,
由折叠的性质得:∠BEF=∠GEF=
∠BEG=45°,
∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,
∴BF=BN﹣FN=3
﹣3;
故答案为:
或
.
![]()
![]()
【题目】某水果经销商上月份销售一种新上市的水果,平均售价为10元/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系,并且得到了表中的数据:
价格x(元/千克) | 7 | 5 |
价格y(千克) | 2000 | 4000 |
(1)求y与x之间的函数解析式;
(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?