题目内容
二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m-1=0有两个不相等的实数根,则整数m的最小值为( )
A. 0 B. -1 C. 1 D. 2
如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于( )
A. 30° B. 35 C. 40° D. 50°
抛物线 y=3x2﹣6x+a 与 x 轴只有一个公共点,则 a 的值为_____.
某个体商户购进某种电子产品的进价为50元/个,根据市场调研发现售价为80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,设销售价格每个降低x元,每周销售量为y个.
(1)直接写出销售量y个与降价x元之间的函数关系式;
(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
(3)若商户计划下周利润不低于5040元的情况下,他至少要准备多少元进货成本?
若函数的图像与轴有公共点,则实数a的取值范围 .
二次函数y=x2+2x+3的图象的开口方向为( )
A. 向上 B. 向下 C. 向左 D. 向右
某店只销售某种进价为40元/kg的产品,已知该店按60元kg出售时,每天可售出100kg,后来经过市场调查发现,单价每降低1元,则每天的销售量可增加10kg.
(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)
(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?
(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?
二次函数y=﹣(x+2)2﹣1的图象的对称轴是( )
A. 直线x=1 B. 直线x=﹣1 C. 直线x=2 D. 直线x=﹣2
如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4