题目内容
已知x-
=2,求:(1)x2+
;(2)x4+
;(3)x+
.
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x4 |
| 1 |
| x |
分析:(1)根据x2+
=(x-
)2+2即可求解;
(2)根据x4+
=(x2+
)2-2即可求解;
(3)根据(x+
)2=x2+
+2首先求得(x+
)2的值,然后开方即可求解.
| 1 |
| x2 |
| 1 |
| x |
(2)根据x4+
| 1 |
| x4 |
| 1 |
| x2 |
(3)根据(x+
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
解答:解:(1)x2+
=(x-
)2+2=22+2=6;
(2)x4+
=(x2+
)2-2=36-2=34;
(3)∵(x+
)2=x2+
+2=6+2=8.
∴x+
=±
.
| 1 |
| x2 |
| 1 |
| x |
(2)x4+
| 1 |
| x4 |
| 1 |
| x2 |
(3)∵(x+
| 1 |
| x |
| 1 |
| x2 |
∴x+
| 1 |
| x |
| 8 |
点评:本题主要考查完全平方公式,熟记公式的几个变形对解题大有帮助.
练习册系列答案
相关题目