ÌâÄ¿ÄÚÈÝ
Èçͼ1£¬ÒÑÖªÅ×ÎïÏßy=a£¨x-
£©2+cÓëxÖá½»ÓëA¡¢BÁ½µã£¬ÓëyÖá½»ÓëµãC£¬Bµã×ø±êΪ£¨6£¬0£©£¬Cµã×ø±êΪ£¨0£¬-3£©£®µãPÊÇÏß¶ÎABÉϵÄÒ»¸ö¶¯µã£¨µãP²»ÓëA¡¢BÁ½µãÖØºÏ£©£®ÔÚµãPÔ˶¯¹ý³ÌÖУ¬Ê¼ÖÕÓÐÒ»Ìõ¹ýµãPÇÒºÍyÖáÆ½ÐеÄÖ±ÏßÒ²ËæÖ®Ô˶¯£¬¸ÃÖ±ÏßÓëÅ×ÎïÏߵĽ»µãΪM£¬ÓëÖ±ÏßBCµÄ½»µãΪN£®
£¨1£©¢ÙÇó³öÅ×ÎïÏߵĺ¯Êý±í´ïʽ£®
¢ÚÖ±½Óд³öÖ±ÏßBCµÄº¯Êý±í´ïʽ£®
£¨2£©¢ÙÈçͼ2£¬Á¬½ÓMO¡¢MB¡¢ON£¬ÉèËıßÐÎOMBNµÄÃæ»ýΪS£¬ÔÚµãPµÄÔ˶¯¹ý³ÌÖУ¬SÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢Úµ±SµÄÖµ×î´óʱ£¬ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹¡÷MNEµÄÖܳ¤×îС£¿Èô´æÔÚ£¬ÇëÇó³öµãEµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ3£¬¹ýµãN×÷NH¡ÍyÖáÓÚµãH£¬Á¬½ÓMH£¬ÔÚµãPµÄÔ˶¯¹ý³ÌÖУ¬µ±¡÷MNHºÍ¡÷OBCÏàËÆÊ±£¬Çó³öµãMµÄ×ø±ê£®

| 7 |
| 2 |
£¨1£©¢ÙÇó³öÅ×ÎïÏߵĺ¯Êý±í´ïʽ£®
¢ÚÖ±½Óд³öÖ±ÏßBCµÄº¯Êý±í´ïʽ£®
£¨2£©¢ÙÈçͼ2£¬Á¬½ÓMO¡¢MB¡¢ON£¬ÉèËıßÐÎOMBNµÄÃæ»ýΪS£¬ÔÚµãPµÄÔ˶¯¹ý³ÌÖУ¬SÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢Úµ±SµÄÖµ×î´óʱ£¬ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹¡÷MNEµÄÖܳ¤×îС£¿Èô´æÔÚ£¬ÇëÇó³öµãEµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ3£¬¹ýµãN×÷NH¡ÍyÖáÓÚµãH£¬Á¬½ÓMH£¬ÔÚµãPµÄÔ˶¯¹ý³ÌÖУ¬µ±¡÷MNHºÍ¡÷OBCÏàËÆÊ±£¬Çó³öµãMµÄ×ø±ê£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺×ÛºÏÌâ
·ÖÎö£º£¨1£©¢Ù½«Bµã¡¢CµãµÄ×ø±ê´úÈ룬ÀûÓôý¶¨ÏµÊý·¨¿ÉÈ·¶¨Å×ÎïÏߵĺ¯Êý±í´ïʽ£»¢ÚÓÉB¡¢CÁ½µãµÄ×ø±ê£¬¿ÉµÃÖ±ÏßBCµÄº¯Êý±í´ïʽ£»
£¨2£©¢ÙÉèP£¨x£¬0£©£¬ÔòM£¨x£¬-
x2+
x-3£©£¬N£¨x£¬
x-3£©£¬±íʾ³öMN£¬¼Ì¶øµÃ³öSµÄ±í´ïʽ£®ÀûÓÃÅä·½·¨Çó×îÖµ¼´¿É£»
¢ÚÓÉÌâÒâµÃ£ºM£¨3£¬3£©£¬N£¨3£¬-
£©£¬ÔòM£¨3£¬3£©¹ØÓÚx=
µÄ¶Ô³ÆµãM1Ϊ£¨4£¬3£©£¬Çó³öÖ±ÏßM1NµÄ±í´ïʽ£¬¸ù¾ÝµãFµÄºá×ø±êΪ
£¬¿ÉÇó³öµãFµÄ×Ý×ø±ê£¬¼Ì¶øµÃ³öµãEµÄ×ø±ê£®
£¨3£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬¢Ù¡÷NMH¡×¡÷OBC£¬¢Ú¡÷NMH¡×¡÷OCB£¬¸ù¾Ý¶ÔÓ¦±ß³É±ÈÀý½â³öxµÄÖµ£¬¼Ì¶ø¿ÉµÃµãMµÄ×ø±ê£®
£¨2£©¢ÙÉèP£¨x£¬0£©£¬ÔòM£¨x£¬-
| 1 |
| 2 |
| 7 |
| 2 |
| 1 |
| 2 |
¢ÚÓÉÌâÒâµÃ£ºM£¨3£¬3£©£¬N£¨3£¬-
| 3 |
| 2 |
| 7 |
| 2 |
| 7 |
| 2 |
£¨3£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬¢Ù¡÷NMH¡×¡÷OBC£¬¢Ú¡÷NMH¡×¡÷OCB£¬¸ù¾Ý¶ÔÓ¦±ß³É±ÈÀý½â³öxµÄÖµ£¬¼Ì¶ø¿ÉµÃµãMµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©¢Ù½«µãB£¨6£¬0£©£¬µãC£¨0£¬-3£©´úÈëÅ×ÎïÏß½âÎöʽ¿ÉµÃ£º
£¬
½âµÃ£º
£¬
¡ày=-
£¨x-
£©+
£®
¢ÚÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
Ôò
£¬
½âµÃ£º
£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪ£ºy=
x-3£®
£¨2£©¢ÙÉèP£¨x£¬0£©£¬ÔòM£¨x£¬-
x2+
x-3£©£¬N£¨x£¬
x-3£©£¬
¡àMN=-
x2+
x-3-£¨
x-3£©=-
x2+3x£¬
S=
£¨-
x2+3x£©¡Á6
=-
x2+9x
=-
£¨x2-6x+9-9£©
=-
£¨x-3£©2+
£¬
¡ß-
£¼0£¬
¡àµ±x=3ʱ£¬S×î´ó=
£®
¢ÚÓÉÌâÒâµÃ£ºM£¨3£¬3£©£¬N£¨3£¬-
£©£¬
M£¨3£¬3£©¹ØÓÚx=
µÄ¶Ô³ÆµãM1Ϊ£¨4£¬3£©£¬
ÉèÖ±ÏßM1NµÄ±í´ïʽΪy=mx+n£¬½«£¨4£¬3£©£¬£¨3£¬-
£©´úÈëµÃ£º
£¬
½âµÃ£º
£¬
¡ày=
x-15
Áîx=
£¬
¡ày=
£¬
¡àF£¨
£¬
£©£®
£¨3£©µ±¡÷NMH¡×¡÷OBC£¬Ôò
=
=2£¬
½âµÃ£ºx1=0£¨ÉáÈ¥£©£¬x2=2£¬
¡àM£¨2£¬2£©£®
µ±¡÷NMH¡×¡÷OCB£¬Ôò
=
=
£¬
½âµÃ£ºx1=0£¨ÉáÈ¥£©£¬x2=5£¬
¡àM£¨5£¬2£©£®
×ÛÉÏËùÊö£ºµãMµÄ×ø±êΪ£¨5£¬2£©»ò£¨2£¬2£©£®
|
½âµÃ£º
|
¡ày=-
| 1 |
| 2 |
| 7 |
| 2 |
| 25 |
| 8 |
¢ÚÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
Ôò
|
½âµÃ£º
|
¡àÖ±ÏßBCµÄ½âÎöʽΪ£ºy=
| 1 |
| 2 |
£¨2£©¢ÙÉèP£¨x£¬0£©£¬ÔòM£¨x£¬-
| 1 |
| 2 |
| 7 |
| 2 |
| 1 |
| 2 |
¡àMN=-
| 1 |
| 2 |
| 7 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
S=
| 1 |
| 2 |
| 1 |
| 2 |
=-
| 3 |
| 2 |
=-
| 3 |
| 2 |
=-
| 3 |
| 2 |
| 27 |
| 2 |
¡ß-
| 3 |
| 2 |
¡àµ±x=3ʱ£¬S×î´ó=
| 27 |
| 2 |
¢ÚÓÉÌâÒâµÃ£ºM£¨3£¬3£©£¬N£¨3£¬-
| 3 |
| 2 |
M£¨3£¬3£©¹ØÓÚx=
| 7 |
| 2 |
ÉèÖ±ÏßM1NµÄ±í´ïʽΪy=mx+n£¬½«£¨4£¬3£©£¬£¨3£¬-
| 3 |
| 2 |
|
½âµÃ£º
|
¡ày=
| 9 |
| 2 |
Áîx=
| 7 |
| 2 |
¡ày=
| 3 |
| 4 |
¡àF£¨
| 7 |
| 2 |
| 3 |
| 4 |
£¨3£©µ±¡÷NMH¡×¡÷OBC£¬Ôò
-
| ||
| x |
| 6 |
| 3 |
½âµÃ£ºx1=0£¨ÉáÈ¥£©£¬x2=2£¬
¡àM£¨2£¬2£©£®
µ±¡÷NMH¡×¡÷OCB£¬Ôò
-
| ||
| x |
| 3 |
| 6 |
| 1 |
| 2 |
½âµÃ£ºx1=0£¨ÉáÈ¥£©£¬x2=5£¬
¡àM£¨5£¬2£©£®
×ÛÉÏËùÊö£ºµãMµÄ×ø±êΪ£¨5£¬2£©»ò£¨2£¬2£©£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ۺϣ¬Éæ¼°ÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Åä·½·¨Çó¶þ´Îº¯Êý×îÖµ¼°ÀûÓÃÖá¶Ô³ÆÇó×î¶Ì·¾¶µÄ֪ʶ£¬×ۺϵÄ֪ʶµã½Ï¶à£¬½â´ð±¾ÌâµÄ¹Ø¼üÊÇÊýÐνáºÏ˼Ïë¼°·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓã¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿