题目内容

如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.
(1)若四边形BPCP′为菱形,求BM的长;
(2)若△BMP′∽△ABC,求BM的长;
(3)若△ABD为等腰三角形,求△ABD的面积.

【答案】分析:(1)由菱形的性质可知,点M为BC的中点,所以BM可求;
(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,则△BMP′必为等腰直角三角形.证明△BMP′、△BMP、△BPP′均为等腰直角三角形,则BP=BP′;证明△BCP为等腰三角形,BP=BC,从而BP′=BC=4,进而求出BM的长度;
(3)△ABD为等腰三角形,有3种情形,需要分类讨论计算.
解答:解:(1)∵四边形BPCP′为菱形,而菱形的对角线互相垂直平分,
∴点M为BC的中点,
∴BM=BC=×4=2.

(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,
则△BMP′必为等腰直角三角形,BM=MP′.
由对称轴可知,MP=MP′,PP′⊥BC,则△BMP为等腰直角三角形,
∴△BPP′为等腰直角三角形,BP′=BP.
∵∠CBP=45°,∠BCP=(180°-45°)=67.5°,
∴∠BPC=180°-∠CBP-∠BCP=180°-45°-67.5°=67.5°,
∴∠BPC=∠BCP,
∴BP=BC=4,
∴BP′=4.
在等腰直角三角形BMP′中,斜边BP′=4,
∴BM=BP′=

(3)△ABD为等腰三角形,有3种情形:
①若AD=BD,如题图②所示.
此时△ABD为等腰直角三角形,斜边AB=4,
∴S△ABD=AD•BD=××=4;
②若AD=AB,如下图所示:

过点D作DE⊥AB于点E,则△ADE为等腰直角三角形,
∴DE=AD=AB=
∴S△ABD=AB•DE=×4×=
③若AB=BD,则点D与点C重合,可知此时点P、点P′、点M均与点C重合,
∴S△ABD=S△ABC=AB•BC=×4×4=8.
点评:本题是几何综合题,考查了相似三角形的性质、等腰直角三角形、等腰三角形、菱形、勾股定理等知识点,难度不大.第(3)问考查了分类讨论的数学思想,是本题的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网